random.seed()
使用方式
import numpy as np
for _ in range(5):
np.random.seed(10)
a = np.random.random((10,))
print(a)
Output
[0.77132064 0.02075195 0.63364823 0.74880388 0.49850701 0.22479665
0.19806286 0.76053071 0.16911084 0.08833981]
[0.77132064 0.02075195 0.63364823 0.74880388 0.49850701 0.22479665
0.19806286 0.76053071 0.16911084 0.08833981]
[0.77132064 0.02075195 0.63364823 0.74880388 0.49850701 0.22479665
0.19806286 0.76053071 0.16911084 0.08833981]
[0.77132064 0.02075195 0.63364823 0.74880388 0.49850701 0.22479665
0.19806286 0.76053071 0.16911084 0.08833981]
[0.77132064 0.02075195 0.63364823 0.74880388 0.49850701 0.22479665
0.19806286 0.76053071 0.16911084 0.08833981]
錯誤用法
import numpy as np
np.random.seed(10)
for _ in range(5):
a = np.random.random((10,))
print(a)
Output
[0.77132064 0.02075195 0.63364823 0.74880388 0.49850701 0.22479665
0.19806286 0.76053071 0.16911084 0.08833981]
[0.68535982 0.95339335 0.00394827 0.51219226 0.81262096 0.61252607
0.72175532 0.29187607 0.91777412 0.71457578]
[0.54254437 0.14217005 0.37334076 0.67413362 0.44183317 0.43401399
0.61776698 0.51313824 0.65039718 0.60103895]
[0.8052232 0.52164715 0.90864888 0.31923609 0.09045935 0.30070006
0.11398436 0.82868133 0.04689632 0.62628715]
[0.54758616 0.819287 0.19894754 0.8568503 0.35165264 0.75464769
0.29596171 0.88393648 0.32551164 0.1650159 ]